Expander chunked codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expander Chunked Codes

Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the input packets are encoded into small chunks (i.e., subsets of the coded packets). During the network transmission, RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize the transmission of chunks and derive some basic prop...

متن کامل

Expander Codes

We present a new class of asymptotically good, linear error-correcting codes based upon expander graphs. These codes have linear time sequential decoding algorithms , logarithmic time parallel decoding algorithms with a linear number of processors, and are simple to understand. We present both randomized and explicit constructions for some of these codes. Experimental results demonstrate the ex...

متن کامل

On expander codes

Expander codes count among the numerous applications of expander graphs. The term was first coined by Sipser and Spielman when they showed how expander graphs can be used to devise error-correcting codes with large blocklengths that can correct efficiently a constant fraction of errors. This approach has since proved to be a fertile avenue of research that provides insight both into modern iter...

متن کامل

Error Exponents of Expander Codes

We show that expander codes attain the capacity of the binary-symmetric channel under iterative decoding. The error probability has a positive exponent for all rates between zero and channel capacity. The decoding complexity grows linearly with code length.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EURASIP Journal on Advances in Signal Processing

سال: 2015

ISSN: 1687-6180

DOI: 10.1186/s13634-015-0297-8